Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Front Immunol ; 13: 990071, 2022.
Article in English | MEDLINE | ID: covidwho-2327364

ABSTRACT

Although immune response enhancement has been reported after primary and booster vaccines of CoronaVac, neutralization breadth of SARS-CoV-2 variants is still unclear. In the present study, we examined the neutralization magnitude and breadth of SARS-CoV-2 variants including Beta (B.1.351), Delta (B.1.617.2) and Omicron (B.1.1.529) in 33 convalescent COVID-19 patients and a cohort of 55 medical staff receiving primary CoronaVac vaccines and an additional homologous booster dose. Results showed that, as compared with the two-dose primary vaccination, the homologous booster dose achieved 2.24-, 3.98-, 4.58- and 2.90-fold increase in neutralization titer against wild-type, Beta, Delta, and Omicron, respectively. After booster dose, neutralization titer reduction for variants was less than that after the primary vaccine or that for convalescents. The proportion of recipients able to neutralize 2 or more variants increased from 36.36% post the primary vaccination to 87.27% after the booster. Significant increase in neutralization breadth of 1.24 (95% confidence interval (CI), 0.89-1.59) variants was associated with a log10 increase in neutralization titer against the wild-type. In addition, anti-RBD IgG level was identified as an excellent surrogate for positive neutralization of SARS-CoV-2 and neutralization breadth of variants. These findings highlight the value of an additional homologous CoronaVac dose in broadening the cross-neutralization against SARS-CoV-2 variants, and are critical for informing the booster dose vaccination efforts.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibody Formation , COVID-19 Vaccines , Humans , Immunoglobulin G , Neutralization Tests , Spike Glycoprotein, Coronavirus
2.
J Infect Dis ; 227(6): 780-787, 2023 03 28.
Article in English | MEDLINE | ID: covidwho-2273580

ABSTRACT

BACKGROUND: Cross-neutralizing capacity of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is important in mitigating (re-)exposures. Role of antibody maturation, the process whereby selection of higher affinity antibodies augments host immunity, to determine SARS-CoV-2 neutralizing capacity was investigated. METHODS: Sera from SARS-CoV-2 convalescents at 2, 6, or 10 months postrecovery, and BNT162b2 vaccine recipients at 3 or 25 weeks postvaccination, were analyzed. Anti-spike IgG avidity was measured in urea-treated ELISAs. Neutralizing capacity was assessed by surrogate neutralization assays. Fold change between variant and wild-type neutralization inferred the breadth of neutralizing capacity. RESULTS: Compared with early-convalescent, avidity indices of late-convalescent sera were significantly higher (median, 37.7 [interquartile range 28.4-45.1] vs 64.9 [57.5-71.5], P < .0001). Urea-resistant, high-avidity IgG best predicted neutralizing capacity (Spearman r = 0.49 vs 0.67 [wild-type]; 0.18-0.52 vs 0.48-0.83 [variants]). Higher-avidity convalescent sera better cross-neutralized SARS-CoV-2 variants (P < .001 [Alpha]; P < .01 [Delta and Omicron]). Vaccinees only experienced meaningful avidity maturation following the booster dose, exhibiting rather limited cross-neutralizing capacity at week 25. CONCLUSIONS: Avidity maturation was progressive beyond acute recovery from infection, or became apparent after the booster vaccine dose, granting broader anti-SARS-CoV-2 neutralizing capacity. Understanding the maturation kinetics of the 2 building blocks of anti-SARS-CoV-2 humoral immunity is crucial.


Subject(s)
BNT162 Vaccine , COVID-19 , Humans , Antibody Affinity , COVID-19 Serotherapy , SARS-CoV-2 , Urea , Vaccination , Immunoglobulin G , Antibodies, Neutralizing , Antibodies, Viral , Spike Glycoprotein, Coronavirus
3.
Front Immunol ; 13: 1027924, 2022.
Article in English | MEDLINE | ID: covidwho-2119762

ABSTRACT

Objectives: We aimed to evaluate the duration and breadth of antibodies elicited by inactivated COVID-19 vaccinations in healthy blood donors. Methods: We performed serological tests on 1,417 samples from 658 blood donors who received two (n=357), or three (n=301) doses of COVID-19 inactivated vaccine. We also accessed the change in antibody response before and after booster vaccination in 94 participants and their neutralization breadth to the current variants after the booster. Results: Following vaccination, for either the 2- or 3-dose, the neutralizing antibodies (nAbs) peaked with about 97% seropositivity approximately within one month but subsequently decreased over time. Of plasmas collected 6-8 months after the last immunization, the nAb seropositivities were 37% and 85% in populations with 2-dose and 3-dose vaccinations, respectively. The nAbs of plasma samples (collected between 2-6 weeks after the 3rd dose) from triple-vaccinated donors (n=94) showed a geometric mean titer of 145.3 (95% CI: 117.2 to 180.1) against the ancestral B.1, slightly reduced by 1.7-fold against Delta variant, but markedly decreased by 4-6 fold in neutralizing Omicron variants, including the sub-lineages of BA.1 (5.6-fold), BA.1.1 (6.0-fold), BA.2 (4.2-fold), B.2.12.1 (6.2-fold) and BA.4/5 (6.5-fold). Conclusion: These findings suggested that the 3rd dose of inactivated COVID-19 vaccine prolongs the antibody duration in healthy populations, but the elicited-nAbs are less efficient in neutralizing circulating Omicron variants.


Subject(s)
Antibody Formation , COVID-19 , Humans , COVID-19 Vaccines , Blood Donors , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Neutralizing , Vaccination
4.
Cell Rep ; 39(5): 110757, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1850799

ABSTRACT

Although the antibody response to COVID-19 vaccination has been studied extensively at the polyclonal level using immune sera, little has been reported on the antibody response at the monoclonal level. Here, we isolate a panel of 44 anti-SARS-CoV-2 monoclonal antibodies (mAbs) from an individual who received two doses of the ChAdOx1 nCoV-19 (AZD1222) vaccine at a 12-week interval. We show that, despite a relatively low serum neutralization titer, Spike-reactive IgG+ B cells are still detectable 9 months post-boost. Furthermore, mAbs with potent neutralizing activity against the current SARS-CoV-2 variants of concern (Alpha, Gamma, Beta, Delta, and Omicron) are present. The vaccine-elicited neutralizing mAbs form eight distinct competition groups and bind epitopes overlapping with neutralizing mAbs elicited following SARS-CoV-2 infection. AZD1222-elicited mAbs are more mutated than mAbs isolated from convalescent donors 1-2 months post-infection. These findings provide molecular insights into the AZD1222 vaccine-elicited antibody response.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Humans , Vaccination
5.
Viruses ; 14(4)2022 03 24.
Article in English | MEDLINE | ID: covidwho-1834918

ABSTRACT

The effect of treatment with favipiravir, an antiviral purine nucleoside analog, for coronavirus disease 2019 (COVID-19) on the production and duration of neutralizing antibodies for SARS-CoV-2 was explored. There were 17 age-, gender-, and body mass index-matched pairs of favipiravir treated versus control selected from a total of 99 patients recovered from moderate COVID-19. These subjects participated in the longitudinal (>6 months) analysis of (i) SARS-CoV-2 spike protein's receptor-binding domain IgG, (ii) virus neutralization assay using authentic virus, and (iii) neutralization potency against original (WT) SARS-CoV-2 and cross-neutralization against B.1.351 (beta) variant carrying triple mutations of K417N, E484K, and N501Y. The results demonstrate that the use of favipiravir: (1) significantly accelerated the elimination of SARS-CoV-2 in the case vs. control groups (p = 0.027), (2) preserved the generation and persistence of neutralizing antibodies in the host, and (3) did not interfere the maturation of neutralizing potency of anti-SARS-CoV-2 and neutralizing breadth against SARS-CoV-2 variants. In conclusion, treatment of COVID-19 with favipiravir accelerates viral clearance and does not interfere the generation or maturation of neutralizing potency against both WT SARS-CoV-2 and its variants.


Subject(s)
Antibodies, Neutralizing , COVID-19 Drug Treatment , SARS-CoV-2 , Amides/therapeutic use , Antibodies, Neutralizing/metabolism , Antibodies, Viral , Humans , Immunoglobulin G , Neutralization Tests , Pyrazines/therapeutic use , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL